加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 什么是bridge?
    • 创建bridge
    • 将bridge和veth设备相连
    • 给bridge配上IP
    • 将物理网卡添加到bridge
    • bridge必须要配置IP吗?
    • bridge常用场景
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

Linux BSP实战课(网络篇):虚拟网络设备bridge

2023/09/18
3557
阅读需 30 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

什么是bridge?

首先,bridge是一个虚拟网络设备,所以具有网络设备的特征,可以配置IP、MAC地址等;其次,bridge是一个虚拟交换机,和物理交换机有类似的功能。

对于普通的网络设备来说,只有两端,从一端进来的数据会从另一端出去,如物理网卡从外面网络中收到的数据会转发给内核协议栈,而从协议栈过来的数据会转发到外面的物理网络中。

而bridge不同,bridge有多个端口,数据可以从任何端口进来,进来之后从哪个口出去和物理交换机的原理差不多,要看mac地址。

创建bridge

我们先创建一个bridge:

dev@debian:~$ sudo ip link add name br0 type bridge
dev@debian:~$ sudo ip link set br0 up

当刚创建一个bridge时,它是一个独立的网络设备,只有一个端口连着协议栈,其它的端口啥都没连,这样的bridge没有任何实际功能,如下图所示:

这里假设eth0是我们的物理网卡,IP地址是192.168.3.21,网关是192.168.3.1

将bridge和veth设备相连

创建一对veth设备,并配置上IP

dev@debian:~$ sudo ip link add veth0 type veth peer name veth1
dev@debian:~$ sudo ip addr add 192.168.3.101/24 dev veth0
dev@debian:~$ sudo ip addr add 192.168.3.102/24 dev veth1
dev@debian:~$ sudo ip link set veth0 up
dev@debian:~$ sudo ip link set veth1 up

将veth0连上br0

dev@debian:~$ sudo ip link set dev veth0 master br0
#通过bridge link命令可以看到br0上连接了哪些设备
dev@debian:~$ sudo bridge link
6: veth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state forwarding priority 32 cost 2

这时候,网络就变成了这个样子:

br0和veth0相连之后,发生了几个变化:

    br0和veth0之间连接起来了,并且是双向的通道协议栈和veth0之间变成了单通道,协议栈能发数据给veth0,但veth0从外面收到的数据不会转发给协议栈br0的mac地址变成了veth0的mac地址

相当于bridge在veth0和协议栈之间插了一脚,在veth0上面做了点小动作,将veth0本来要转发给协议栈的数据给拦截了,全部转发给bridge了,同时bridge也可以向veth0发数据。

下面来检验一下是不是这样的:

通过veth0 ping veth1失败:

dev@debian:~$ ping -c 1 -I veth0 192.168.3.102
PING 192.168.2.1 (192.168.2.1) from 192.168.2.11 veth0: 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable

--- 192.168.2.1 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

为什么veth0加入了bridge之后,就ping不通veth2了呢?先抓包看看:

#由于veth0的arp缓存里面没有veth1的mac地址,所以ping之前先发arp请求
#从veth1上抓包来看,veth1收到了arp请求,并且返回了应答
dev@debian:~$ sudo tcpdump -n -i veth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth1, link-type EN10MB (Ethernet), capture size 262144 bytes
21:43:48.353509 ARP, Request who-has 192.168.3.102 tell 192.168.3.101, length 28
21:43:48.353518 ARP, Reply 192.168.3.102 is-at 26:58:a2:57:37:e9, length 28

#从veth0上抓包来看,数据包也发出去了,并且也收到了返回
dev@debian:~$ sudo tcpdump -n -i veth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth0, link-type EN10MB (Ethernet), capture size 262144 bytes
21:44:09.775392 ARP, Request who-has 192.168.3.102 tell 192.168.3.101, length 28
21:44:09.775400 ARP, Reply 192.168.3.102 is-at 26:58:a2:57:37:e9, length 28

#再看br0上的数据包,发现只有应答
dev@debian:~$ sudo tcpdump -n -i br0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on br0, link-type EN10MB (Ethernet), capture size 262144 bytes
21:45:48.225459 ARP, Reply 192.168.3.102 is-at 26:58:a2:57:37:e9, length 28

从上面的抓包可以看出,去和回来的流程都没有问题,问题就出在veth0收到应答包后没有给协议栈,而是给了br0,于是协议栈得不到veth1的mac地址,从而通信失败。

给bridge配上IP

通过上面的分析可以看出,给veth0配置IP没有意义,因为就算协议栈传数据包给veth0,应答包也回不来。这里我们就将veth0的IP让给bridge。

dev@debian:~$ sudo ip addr del 192.168.3.101/24 dev veth0
dev@debian:~$ sudo ip addr add 192.168.3.101/24 dev br0

于是网络变成了这样子:

其实veth0和协议栈之间还是有联系的,但由于veth0没有配置IP,所以协议栈在路由的时候不会将数据包发给veth0,就算强制要求数据包通过veth0发送出去,但由于veth0从另一端收到的数据包只会给br0,所以协议栈还是没法收到相应的arp应答包,导致通信失败。这里为了表达更直观,将协议栈和veth0之间的联系去掉了,veth0相当于一根网线。

再通过br0 ping一下veth1,结果成功:

dev@debian:~$ ping -c 1 -I br0 192.168.3.102
PING 192.168.3.102 (192.168.3.102) from 192.168.3.101 br0: 56(84) bytes of data.
64 bytes from 192.168.3.102: icmp_seq=1 ttl=64 time=0.121 ms

--- 192.168.3.102 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.121/0.121/0.121/0.000 ms

但ping网关还是失败,因为这个bridge上只有两个网络设备,分别是192.168.3.101和192.168.3.102,br0不知道192.168.3.1在哪。

dev@debian:~$ ping -c 1 -I br0 192.168.3.1
PING 192.168.3.1 (192.168.3.1) from 192.168.3.101 br0: 56(84) bytes of data.
From 192.168.3.101 icmp_seq=1 Destination Host Unreachable

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

将物理网卡添加到bridge

将eth0添加到br0上:

dev@debian:~$ sudo ip link set dev eth0 master br0
dev@debian:~$ sudo bridge link
2: eth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state forwarding priority 32 cost 4
6: veth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state forwarding priority 32 cost 2

br0根本不区分接入进来的是物理设备还是虚拟设备,对它来说都一样的,都是网络设备,所以当eth0加入br0之后,落得和上面veth0一样的下场,从外面网络收到的数据包将无条件的转发给br0,自己变成了一根网线。

这时通过eth0来ping网关失败,但由于br0通过eth0这根网线连上了外面的物理交换机,所以连在br0上的设备都能ping通网关,这里连上的设备就是veth1和br0自己,veth1是通过veth0这根网线连上去的,而br0可以理解为自己有一块自带的网卡。

#通过eth0来ping网关失败
dev@debian:~$ ping -c 1 -I eth0 192.168.3.1
PING 192.168.3.1 (192.168.3.1) from 192.168.3.21 eth0: 56(84) bytes of data.
From 192.168.3.21 icmp_seq=1 Destination Host Unreachable

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

#通过br0来ping网关成功
dev@debian:~$ ping -c 1 -I br0 192.168.3.1
PING 192.168.3.1 (192.168.3.1) from 192.168.3.101 br0: 56(84) bytes of data.
64 bytes from 192.168.3.1: icmp_seq=1 ttl=64 time=27.5 ms

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 27.518/27.518/27.518/0.000 ms

#通过veth1来ping网关成功
dev@debian:~$ ping -c 1 -I veth1 192.168.3.1
PING 192.168.3.1 (192.168.3.1) from 192.168.3.102 veth1: 56(84) bytes of data.
64 bytes from 192.168.3.1: icmp_seq=1 ttl=64 time=68.8 ms

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 68.806/68.806/68.806/0.000 ms

由于eth0已经变成了和网线差不多的功能,所以在eth0上配置IP已经没有什么意义了,并且还会影响协议栈的路由选择,比如如果上面ping的时候不指定网卡的话,协议栈有可能优先选择eth0,导致ping不通,所以这里需要将eth0上的IP去掉。

#在本人的测试机器上,由于eth0上有IP,
#访问192.168.3.0/24网段时,会优先选择eth0
dev@debian:~$ sudo route -v
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
default         192.168.3.1     0.0.0.0         UG    0      0        0 eth0
link-local      *               255.255.0.0     U     1000   0        0 eth0
192.168.3.0     *               255.255.255.0   U     0      0        0 eth0
192.168.3.0     *               255.255.255.0   U     0      0        0 veth1
192.168.3.0     *               255.255.255.0   U     0      0        0 br0

#由于eth0已结接入了br0,所有它收到的数据包都会转发给br0,
#于是协议栈收不到arp应答包,导致ping失败
dev@debian:~$ ping -c 1 192.168.3.1
PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.
From 192.168.3.21 icmp_seq=1 Destination Host Unreachable

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

#将eth0上的IP删除掉
dev@debian:~$ sudo ip addr del 192.168.3.21/24 dev eth0

#再ping一次,成功
dev@debian:~$ ping -c 1 192.168.3.1
PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.
64 bytes from 192.168.3.1: icmp_seq=1 ttl=64 time=3.91 ms

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 3.916/3.916/3.916/0.000 ms

#这是因为eth0没有IP之后,路由表里面就没有它了,于是数据包会从veth1出去
dev@debian:~$ sudo route -v
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
192.168.3.0     *               255.255.255.0   U     0      0        0 veth1
192.168.3.0     *               255.255.255.0   U     0      0        0 br0
#从这里也可以看出,由于原来的默认路由走的是eth0,所以当eth0的IP被删除之后,
#默认路由不见了,想要连接192.168.3.0/24以外的网段的话,需要手动将默认网关加回来

#添加默认网关,然后再ping外网成功
dev@debian:~$ sudo ip route add default via 192.168.3.1
dev@debian:~$ ping -c 1 baidu.com
PING baidu.com (111.13.101.208) 56(84) bytes of data.
64 bytes from 111.13.101.208: icmp_seq=1 ttl=51 time=30.6 ms

--- baidu.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 30.690/30.690/30.690/0.000 ms

经过上面一系列的操作后,网络变成了这个样子:

bridge必须要配置IP吗?

在我们常见的物理交换机中,有可以配置IP和不能配置IP两种,不能配置IP的交换机一般通过com口连上去做配置(更简单的交换机连com口的没有,不支持任何配置),而能配置IP的交换机可以在配置好IP之后,通过该IP远程连接上去做配置,从而更方便。

bridge就属于后一种交换机,自带虚拟网卡,可以配置IP,该虚拟网卡一端连在bridge上,另一端跟协议栈相连。和物理交换机一样,bridge的工作不依赖于该虚拟网卡,但bridge工作不代表机器能连上网,要看组网方式。

删除br0上的IP:

dev@debian:~$ sudo ip addr del 192.168.3.101/24 dev br0

于是网络变成了这样子,相当于br0的一个端口通过eth0连着交换机,另一个端口通过veth0连着veth1:

ping网关成功,说明这种情况下br0不配置IP对通信没有影响,数据包还能从veth1出去:

dev@debian:~$ ping -c 1 192.168.3.1
PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.
64 bytes from 192.168.3.1: icmp_seq=1 ttl=64 time=1.24 ms

--- 192.168.3.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.242/1.242/1.242/0.000 ms

上面如果没有veth0和veth1的话,删除br0上的IP后,网络将会不通,因为没有设备和协议栈完全相连

bridge常用场景

上面通过例子展示了bridge的功能,但例子中的那种部署方式没有什么实际用途,还不如在一个网卡上配置多个IP地址来的直接。这里来介绍两种常见的部署方式。

虚拟机

虚拟机通过tun/tap或者其它类似的虚拟网络设备,将虚拟机内的网卡同br0连接起来,这样就达到和真实交换机一样的效果,虚拟机发出去的数据包先到达br0,然后由br0交给eth0发送出去,数据包都不需要经过host机器的协议栈,效率高。

docker

由于容器运行在自己单独的network namespace里面,所以都有自己单独的协议栈,情况和上面的虚拟机差不多,但它采用了另一种方式来和外界通信:

容器中配置网关为.9.1,发出去的数据包先到达br0,然后交给host机器的协议栈,由于目的IP是外网IP,且host机器开启了IP forward功能,于是数据包会通过eth0发送出去,由于.9.1是内网IP,所以一般发出去之前会先做NAT转换(NAT转换和IP forward功能都需要自己配置)。由于要经过host机器的协议栈,并且还要做NAT转换,所以性能没有上面虚拟机那种方案好,优点是容器处于内网中,安全性相对要高点。(由于数据包统一由IP层从eth0转发出去,所以不存在mac地址的问题,在无线网络环境下也工作良好)

上面两种部署方案中,同一网段的每个网卡都有自己单独的协议栈,所以不存在上面说的多个ARP的问题

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
CSTNE8M00G520000R0 1 Murata Manufacturing Co Ltd Ceramic Resonator,

ECAD模型

下载ECAD模型
$0.65 查看
HFBR-1414PTZ 1 Foxconn Transmitter, 792nm Min, 865nm Max, ST Connector, Through Hole Mount, ROHS COMPLIANT, PLASTIC, PACKAGE-8
$27.73 查看
TCMT1107 1 Telefunken Semiconductor GmbH & Co Kg Transistor Output Optocoupler, 1-Element, 3750V Isolation,
$0.85 查看

相关推荐

电子产业图谱